
Kandidatexamen

A Review of Freely Available Quantum Computer
Simulation Software

Johan Brandhorst-Satzkorn

LiTH-MAT-EX–2012/07–SE

A Review of Freely Available Quantum Computer
Simulation Software

Department of Applied Mathematics, Linköpings Universitet

Johan Brandhorst-Satzkorn

LiTH-MAT-EX–2012/07–SE

Examensarbete: 16 hp

Level: G2

Supervisor: Jan-Åke Larsson,
Department of Applied Mathematics, Linköpings Universitet

Examiner: Jan-Åke Larsson,
Department of Applied Mathematics, Linköpings Universitet

Linköping: June 2012

Abstract

A study has been made of a few different freely available Quantum Computer
simulators. All the simulators tested are available online on their respective
websites. A number of tests have been performed to compare the different sim-
ulators against each other. Some untested simulators of various programming
languages are included to show the diversity of the quantum computer simulator
applications.

The conclusion of the review is that LibQuantum is the best of the simu-
lators tested because of ease of coding, a great amount of pre-defined function
implementations and decoherence simulation support among other reasons.

Keywords: Quantum Computer Simulation, Quantum Programming Languange,
Library extension, Quantum Computers.

Brandhorst-Satzkorn, 2012. v

vi

Acknowledgements

I would like to thank my supervisor, Jan-Åke Larsson, for providing help with
the structure and scope of the document.

I would also like to thank the authors of the software herein reviewed, for
providing the possibility of simulating a quantum computer in a familiar envi-
ronment and test their work against each other.

Brandhorst-Satzkorn, 2012. vii

viii

Contents

1 Introduction 1
1.1 Background . 1
1.2 Quantum Computers . 1
1.3 Quantum Gates . 3

1.3.1 The Controlled-NOT gate (CNOT) 3
1.3.2 The Toffoli gate (CCNOT) 3
1.3.3 The Hadamard gate . 4

1.4 Quantum Computer Algorithms 5
1.4.1 Computational complexity classes 5
1.4.2 The Deutsch-Josza algorithm 5
1.4.3 Shor’s number factorization algorithm 6
1.4.4 Grover’s database search algorithm 7

2 Quantum Computer Simulators 9
2.1 Summary . 9
2.2 LibQuantum . 9

2.2.1 Documentation . 9
2.2.2 Included functions . 10
2.2.3 Other features . 10

2.3 QCL - Quantum Computer Language 11
2.3.1 Documentation . 11
2.3.2 Included functions . 11
2.3.3 Other features . 11

2.4 Eqcs . 12
2.4.1 Documentation . 12
2.4.2 Included functions . 12
2.4.3 Other features . 12

2.5 Q++ . 13
2.5.1 Documentation . 13
2.5.2 Included functions . 13
2.5.3 Other features . 13

2.6 Other simulators . 13

3 Practical Evaluation 15
3.1 Shor’s factorization algorithm . 15

3.1.1 LibQuantum . 15
3.1.2 QCL . 18

3.2 Grover’s database search algorithm 20

Brandhorst-Satzkorn, 2012. ix

x Contents

3.2.1 LibQuantum . 20
3.2.2 QCL . 21

4 Programming with the simulators 25
4.1 LibQuantum . 25
4.2 QCL . 25
4.3 Eqcs . 26

5 Conclusions 27
5.1 The practical evaluation . 27
5.2 The programming . 27
5.3 Conclusions . 28
5.4 Improvements . 28

A Statistical Data 33
A.1 Shor’s Factorization Algorithm 33

A.1.1 LibQuantum . 33
A.1.2 Quantum Computer Language 34

A.2 Grover’s Database Search Algorithm 35
A.2.1 LibQuantum . 35
A.2.2 Quantum Computer Language 35

A.3 Internal timing comparison of Shor’s Algorithm 36
A.3.1 LibQuantum . 36
A.3.2 Quantum Computer Language 36

B Programming code 37
B.1 LibQuantum . 37

B.1.1 Shor loop . 37
B.1.2 Grover Loop . 40
B.1.3 Deutsch-Jozsa’s algorithm 43

B.2 QCL . 45
B.2.1 Shor loop . 45
B.2.2 Grover loop . 49
B.2.3 Deutsch-Jozsa’s algorithm 50

B.3 Eqcs . 51
B.3.1 Deutsch-Jozsa’s algorithm 51
B.3.2 Quantum gate definitions 53

C 5 CNOT-algorithm 55
C.1 Five CNOT-gate testing algorithm 55

C.1.1 LibQuantum . 55
C.1.2 QCL . 57
C.1.3 Eqcs . 58

Chapter 1

Introduction

Chapter 1: This text is written as a bachelor of science final thesis at Linköpings
University by Johan Brandhorst with Jan-Åke Larsson as supervisor and
examiner, with LATEX in 2012.

This first chapter will give a brief introduction to quantum computers and
other information necessary to perform the comparisons in the review.

1.1 Background

Since the emergence of the field of Quantum Computing in the early 1980s by
Richard Feynman [1] and others, there has been a wish to simulate the behavior
of a quantum computer without the need to build one, as the construction of a
quantum computer is both very expensive and practically complicated.

As a result of this problem there are today many different quantum computer
simulators available, which are run on a classical computer. This paper will
choose between them and compare a few different freely available quantum
computer simulators created in the form of programming language extension
libraries or stand-alone programs.

1.2 Quantum Computers

A quantum computer is similar to a normal computer in many ways; they are
essentially built up of the same 3 parts: a memory, which holds the current infor-
mation about the system, a processor, which performs operations on the current
state of the computer, and some sort of input/output port where information
can be put into the computer and a result can be extracted.

The main difference between a normal computer and a quantum computer
is that quantum computers use a qubit to store the current state of the system
as opposed to the normal bit. A qubit is different for a few different reasons,
one of them is that whereas a classical bit is either 0 or 1, a qubit can be 0 or 1
or a superposition of both. The ket notation is often used to describe the state
of a qubit:

A = |0〉

Brandhorst-Satzkorn, 2012. 1

2 Chapter 1. Introduction

This describes the qubit A with a value of 0. This state corresponds to the
classical bit state 0. An example of a superpositioned qubit B is shown below:

B = α|0〉+ β|1〉

where α and β are generally complex numbers and |α|2 and |β|2 respectively
signify the probability that B is found as either 0 or 1 and naturally

|α|2 + |β|2 = 1.

Another interesting difference between a classical bit and a qubit is that while
we always know the value of the classical bit, the value of the qubit can only be
determined by measurement, and this measurement destroys any information
in the qubit. For example, let:

C = α|0〉+ β|1〉, |α|2 = 0.3, |β|2 = 0.7.

This qubit has a 30% probability of being measured as 0, and a 70% probability
of being measured as 1. Once a measurement has been made, it will be either
0 or 1 and α and β will assume either 0 or 1 depending on what value the
measurement yielded. As a result of this, normally you cannot view a qubit
while an algorithm is running as measuring it would result in the superposition
being destroyed. This is called collapsing the superposition.

Another special characteristic of the qubit is that it can exhibit quantum
entanglement between itself and another qubit. This is an effect unique to quan-
tum computers and it is used extensively in many algorithms and in quantum
cryptography [3]. For example:

D =
1√
2

(|00〉+ |11〉)

This is an entangled state where if we look at the first qubit we have a 50%
chance to measure either 0 or 1 if the second qubit has not been measured.
However, if a measurement is performed on the second qubit, the probability
to measure 0 or 1 on the first qubit is either 100% or 0% depending on what
the second qubit was measured as [4]. The measurement of one of the qubits
affects the value of the other. This is a prime example of entanglement. This
state in particular is one of the Bell states, useful for things such as quantum
teleportation [1].

1.3. Quantum Gates 3

1.3 Quantum Gates

Quantum gates transform the value of a qubit into something different, depend-
ing on the properties of the gate. This is the basic building block of all quantum
algorithms and can be very much compared to the basic logical gates of classical
computers.

Each quantum gate can be expressed through its unitary matrix, which
among other things shows how the gate will act on the input. The size of the
input to the gate determines the size of its unitary matrix, a gate with one input
has a 2x2 matrix while a gate with two inputs has an 4x4 matrix and so on, by
increasing powers of 2.

In order to graphically describe quantum algorithms, a notation called quan-
tum circuitry is often used. The number of qubits used is described by a hori-
zontal line for each qubit and every quantum gate has a special graphical rep-
resentation which usually looks like a box or a line between two or more qubits;

|0〉 • H

|1〉

Shown above are, in order from left to right, the input, the CNOT gate, the
Hadamard gate and a quantum measurement on an algorithm with 2 different
qubits with initial values 0 and 1 respectively.

The gates used in the comparison of the quantum simulation algorithms in
this paper are described below.

1.3.1 The Controlled-NOT gate (CNOT)

The CNOT quantum gate is named after Controlled-NOT, and can be compared
to the classical NOT gate with one extra dependency added. It acts on two
qubits and inverts the second qubit if and only if the first qubit is 1. The first
qubit is called the control while the second is called the target.

Shown below is the 4x4 unitary matrix for the CNOT gate. One can see
how the upper left of the matrix is in fact the identity and the lower right is an
inversion. 

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


The graphical representation of the CNOT gate is shown below, the first line is
the control and the second is the target.

•

1.3.2 The Toffoli gate (CCNOT)

The Toffoli gate is named after Tommaso Toffoli [16] and is in effect an extension
of the CNOT gate, and it is also often called a Controlled-Controlled-NOT gate,
or CCNOT gate. Just as it sounds, the Toffoli gate is a CNOT gate with 2

4 Chapter 1. Introduction

control bits. That is, the 3rd qubit will be inverted if both qubit 1 and qubit 2
are 1. Sometimes an n-Toffoli gate is referenced, this means a CNOT gate with
n controlling qubits.

The Toffoli gate is proven to be universal for classical computation, that is,
it can be used to simulate any classical gates, and so any classical circuits can
be implemented on a quantum computer using Toffoli gates [1]. The Toffoli gate
itself can also be implemented using two-qubit gates.

Shown below is the 8x8 unitary matrix for the Toffoli gate. Again one can
see how the upper left of the matrix is in fact the identity and the lower right
is an inversion, much like the CNOT gate.

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


The graphical representation of the Toffoli gate is shown below.

•
•

1.3.3 The Hadamard gate

The Hadamard gate is named after Jacques Hadamard, a french mathematician.
It is one of the most useful gates in quantum physics [1] and creates a super-
positioned state out of a normal 1 or 0. It is used in many quantum computer
algorithms [3].

Shown below is the 2x2 unitary matrix for the Hadamard gate.

1√
2

(
1 1
1 −1

)
The graphical representation of the Hadamard gate is shown below.

H

1.4. Quantum Computer Algorithms 5

1.4 Quantum Computer Algorithms

The field of quantum computers has developed through the discovery of al-
gorithms rather than the actual use of quantum computers. Shor’s proposed
number factorization algorithm [11] renewed the field of quantum computing
algorithm research when it was shown in 1994 [4], and since then many algo-
rithms have been proposed, among them Grover’s database search [12], which
together with Shor’s number factorization algorithm are the two most famous
quantum computer algorithms known.

Modern quantum computer algorithms differ from classical computing algo-
rithms in the relative low-level implementations they are built, as opposed to
the high level programming that is performed in modern day classical computer
algorithms, often operating on the qubit-level in the operations.

In this paper we will also take the example of the Deutsch-Josza algorithm,
which is the first quantum computer algorithm that was proven to give a better
result than what is possible on a classical computer [1]. It laid as a base for
both Shor’s and Grover’s algorithms[11, 12].

We will also give a short introduction to computational complexity classes
that are relevant to the algorithms presented.

1.4.1 Computational complexity classes

The classes relevant to the algorithms presented include: P, EQP, NP, BPP,
BQP.

• P: The set of decision problems that can be solved by a deterministic
classical machine in polynomial time. This class contains problems which
can be effectively calculated.

• EQP: The set of decision problems that can be solved by a deterministic
quantum machine in polynomial time. It is the quantum analogue of P.
Also sometimes called QP.

• NP: The set of decision problems that can be solved by a non-deterministic
classical machine in polynomial time. These problems are basically hard
to calculate but easy to verify. P is contained within NP.

• BPP: The set of descision problems that can be solved by a probabilistic
classical machine in polynomial time, with an error probability of at most
1/3 for all cases.

• BQP: The set of dscision problems that can be solved by a probabilistic
quantum machine in polynomial time, with an error probability of at most
1/3 for all cases. The quantum analogue of BPP.

1.4.2 The Deutsch-Josza algorithm

The Deutsch-Josza algorithm was proposed by David Deutsch and Richard Jozsa
[1] as a generalisation of Deutsch’s algorithm with a quantum register of size n
instead of 1. The purpose of the algorithm is to determine whether a function
is balanced or constant with as few measurements as possible. In the classical
case with n bits, 2n−1 + 1 measurements would need to be performed to be

6 Chapter 1. Introduction

sure to have the right answer, because it is possible to recieve 2n−1 0s before
recieveing a 1 when evaluating the function classically. However with the use
of the Deutsch-Josza Algorithm the answer can always be found in exactly one
evaluation. It is a deterministic algorithm which is solvable in polynomial time,
and is therefore in EQP.

Although of little practical use, the algorithm proves that quantum comput-
ers are capable of outperforming classical computers [1].

Shown below is the graphical representation of the algorithm with an input
of n qubits.

|0〉 /n H⊗n

Uf
H⊗n

|1〉 H

Uf is the quantum implementation of the function being tested. It must be
either balanced or constant.

1.4.3 Shor’s number factorization algorithm

Shor’s algorithm is the first algorithm of any sort (classical or quantum) that
have been proven to be able to prime factor a number in polynomial time; this
is of great importance to cryptography as the most widely used system today
relies on the fact that no known classical computer algorithms are able to prime
factor in polynomial time.

It was also the first quantum computer algorithm to have a practical use and
is as such possibly the most important quantum algorithm found to this date
[1]. It relies on the use of the quantum Fourier transform [11].

|0〉 /n H⊗n

xamod N
QFT−1

|1〉 /m

Above is the quantum circuit for Shor’s number factorization algorithm for
the number N, where n = 2 logN and m = logN , xamod N is calculated for a
random chosen a < N which has no common factors with N . QFT−1 denotes
the inverse quantum Fourier transform, which due to intereference causes the
important terms to have a higher amplitude than others [11]. From the final
measurement either a result is extracted or the algorithm is re-run for a different
value of a.

Shor’s algorithm is probabilistic and the running time is O((log n)2∗log log n)
for the quantum computing part and it must perform O(log n) steps of post-
processing classical computation, resulting in an overall polynomial time algo-
rithm, placing it in BQP [20].

Shor first showed that the factoring problem can be reduced to period find-
ing. This is the first part of the algorithm, and it is usually implemented clas-
sically. The second part of the algorithm uses the quantum Fourier transform
to find the period, which is where the quantum parallelism is used to outshine
classical computers. The third part includes finding the factors backwards from
there, granted that the period is correct, which is also done clasically.

1.4. Quantum Computer Algorithms 7

1.4.4 Grover’s database search algorithm

Grover’s database search is the second discovered quantum algorithm with great
practical use. It is proven to be able to find an item in a database in O(

√
N)

time, where N is the size of the database, as opposed to classical algorithms
that need linear time to complete any database search, a quadratic speedup in
time.

It is also unique in that it has been proven to be optimal, that is, it is the best
possible database search algorithm that can be implemented through a quantum
computer, so any other good quantum computer database search algorithm will
have at least as many steps as Grover’s database search[13]. Since the algorithm
is probabilistic it is run with several iterations to give an answer with higher
probability[12].

Shown below is the graphical representation of the algorithm where the
number of qubits is n and the number of elements being searched is N = 2n.

|0〉 /n H⊗n

Uω
H⊗n 2|0n〉〈0n| − In H⊗n · · ·

|1〉 H · · ·

Uω is Grover’s Oracle function that returns 1 if and only if the input maps to
a marked element (the element we are searching for). The part from the oracle
until the dots is repeated O(

√
N) times for the best accuracy.

An interesting detail of Grover’s database search algorithm is that if it is
run too many times, eventually the result will diverge from the answer. As a
result it must not only be run enough times, it cannot either be run it too many
times.

8 Chapter 1. Introduction

Chapter 2

Quantum Computer
Simulators

Chapter 2: Today there are over 100 different quantum computer simulators
available freely over the Internet [18], many based on popular program-
ming languages such as Java, C++ or Python. This is a brief introduction
to each of the quantum computer simulators tested, as well as a few others
considered for testing but discarded in the process.

2.1 Summary

Name Computer Language Last update
LibQuantum C 2008
QCL C/Pascal/Own 2006
Eqcs C++ 2012
Q++ C++ 2009
jQuantum Java 2011
PyQu Python 2009
QFC MATLAB 2009

2.2 LibQuantum

LibQuantum is based on C and was first released in 2003, and has since been
continuously updated by the creators, Björn Butscher and Hendrik Weimer. It
is today available in the version 1.0.0, released 2008, which not only supports
quantum computer simulations but also general quantum algorithm simulation.
It has been used as a simulator for a number of papers [8].

2.2.1 Documentation

The documentation for LibQuantum is very well written with examples for all
the functions defined and an explanation for the mathematical theory behind
them. It is an invaluable reference when programming with LibQuantum.

Brandhorst-Satzkorn, 2012. 9

10 Chapter 2. Quantum Computer Simulators

2.2.2 Included functions

It has pre-defined functions for the following quantum gates: Hadamard, CNOT,
Toffoli (CCNOT), Axis rotation gates, Pauli spin gates, and many others

H • • RX X

• RY Y

RZ Z

as well as already implemented functions for the QFT, QFT−1 and the calcula-
tion of xamod N , which as previously explained are all part of Shor’s number
factorization algorithm. A function exists for the creation of custom quantum
gates through their unitary matrix.

Also included is an example program created with the functions in the pro-
gram, to show how the functions can be used. The included quantum computer
algorithms are implementations of Shor’s factorization algorithm and Grover’s
database search algorithm.

2.2.3 Other features

Something useful for applications is the decoherence and quantum error correc-
tion simulation part of the library. The decoherence operator is included in all
elementary gates provided by libquantum so as to simulate the behavior of a real
quantum computer. The decoherence parameter can be set before any calcula-
tions are done if there is a known decoherence for a certain experimental setup.
A source is provided for a list of values of the decoherence parameter[9]. Quan-
tum error correction encoding can be applied before a operation and decoded
afterwards. The QEC uses Steane’s 3-qubit code [10, 21].

Additional features of LibQuantum include density operator formalism to
deliver high performance of systems with a big number of qubits and support for
decoherence simulation as well as time evolution by numerically integrating the
Schrödinger equation through the use of the fourth-order Runge-Kutta scheme,
which is useful for simulating arbitrary quantum systems, although less so for
quantum computer simulation.

LibQuantum also includes a particularly useful set of tools for understanding
the procedure of the programs, quobdump and quobprint, the first one creates
an object code file from a program run (e.g. one calculation of Shor’s algorithm)
and the second one takes the object file created by the first and prints it. The
output is a list of all the calculations performed by the program. This makes it
very easy to perform debugging of your own programs.

2.3. QCL - Quantum Computer Language 11

2.3 QCL - Quantum Computer Language

QCL is one of the older languanges, first released in 1998 and developed by
Bernhard Ömer[2]. It is written in C like LibQuantum. Unlike LibQuantum
QCL attempts to make itself a basis for a new quantum programming language
rather than work as an extension of the standard C libraries. The programs are
run through the terminal rather than compiled and executed on their own. This
means there is little programming experience outside of the knowledge of QCL
needed to successfully create programs, however it also means that you cannot
use standard C functions inside the program code, thus limiting the freedom of
the programmer.

The installation of QCL is unfortunately currently broken. The standard
installation method through the makefile is not working and as such the only
way to run the program is to download a pre-compiled version from the website.
The source code still serves as a possible way of analyzing the structure.

2.3.1 Documentation

The documentation for QCL is contained within a Masters thesis in Computer
Science written by Bernhard Ömer[2] and it also contains a thorough introduc-
tion to quantum computers and quantum physics in general. The paper is filled
with examples to show how the program is used so the user has plenty of infor-
mation on how to construct their simulation. QCL has support for everything
included in a basic programming language, such as all standard data types in-
cluding complex numbers and strings. It includes all the operators expected to
be found as well as logical operations. For a more thorough list of features of
QCL see [2].

The use of QCL is harder than LibQuantum if you are used to programming
in C or C++ at first since there is a new programming standard to adjust to.
The documentation may be overwhelming but the frequent use of examples to
illustrate the information is very useful.

2.3.2 Included functions

QCL has pre-defined functions for the following quantum gates: Hadamard,
CNOT, Toffoli, NOT, Swap and the ability to define other gates through their
unitary matrix.

H • • −1 ×

• ×

Also included are implementations of Shor’s factorization algorithm, Grover’s
database search algorithm and Deutsch-Jozsa’s algorithm.

2.3.3 Other features

The structure of QCL is such that it is launched through the terminal together
with the algorithm to be run, and it is possible to set how many qubits of
memory should be allocated upon launch, through the use of launch parameters.

12 Chapter 2. Quantum Computer Simulators

2.4 Eqcs

Eqcs is developed by Peter Belkner and is currently in version 0.0.8, last updated
in 2012. Most of the code however is written in 1999 and as such is quite dated.
The last update of the code came as a fix to a problem that the author of this
report was experiencing and Peter Belkner is the only simulator author to have
replied to any correspondence sent by the author. He is currently working on
Eqcs version 0.1 which is a revision of the code, however it is not ready for
testing yet.

2.4.1 Documentation

The documentation for Eqcs is found on the website [10] and contains an intro-
duction to how the quantum state information is handled and how to create a
qubit or a set of qubits. It continues to describe in detail much of what can be
done to a set of qubits, such as logical operators between two sets, shifting and
comparisons. Unfortunately it lacks description of anything related to simulat-
ing quantum circuits, such as example implementations of different quantum
gates, with the exception of the example code wherein a cnot gate is defined.
As such, any implementations of quantum algorithms are hard and it is only
with the help of Belkner that the author has been able to write any algorithms.

2.4.2 Included functions

Eqcs comes with the following gates defined in examples: CNOT, CCNOT and
with the help of Belkner, Hadamard. It also shows how the gates are defined,
and there is as such a possibility of defining other gates.

H • •

•

There is an implementation of a quantum plain adder as described by Vedral et
al. [15].

2.4.3 Other features

The quantum gate representation in Eqcs is based on the work of Barenco et
al. [14] and Vedral et al. [15] where it is shown that all unitary operations on
arbitrarily many bits can be expressed as a composition of a set of gates that
consist of all one-bit quantum gates and the two-bit xor gate, and it is also
shown how to construct a plain adder from quantum gates.

2.5. Q++ 13

2.5 Q++

Q++ was first developed in 2003 by Chris Lomont. There is a program written
on top of the Q++ library that allows for graphical creation of quantum circuits
and simulations, although windows is the only supported platform and it is also
quite buggy.

2.5.1 Documentation

Q++ comes with a brief documentation of its contents, without any examples
at all which makes it hard to understand the way it is supposed to be used. In
general the documentation is the least possible, it contains every function within
the library and a short description of what it does but the lack of examples makes
it very hard to follow.

There are a few examples included, outside of the documentation, that can
be used to determine how to use the various functions. A lot of examples from
[1] are included which gives a good guide if you own or have access to the book.

2.5.2 Included functions

It has pre-defined functions for the following quantum gates: Hadamard, CNOT,
Toffoli, Pauli spin gates, T and S gate and the ability to define other gates
through their unitary matrix.

H • • X T

• Y S

Z

Q++ also includes a function for the quantum fourier transform as well as its
inverse.

2.5.3 Other features

Q++ has a very useful function called the Quantum Operator. A Qop is defined
as a set of gates and as such construction of quantum circuits from the circuits
diagram is very easy. This is shown through the programming of some exercises
available in [1], included in the source code of the simulator.

Unfortunately as of the time of writing this paper the author has been unable
to compile the code and therefore unable to test the strenghts and weaknesses
of the library.

2.6 Other simulators

jQuantum, PyQu and QFC have not be tested but are still provided in this
review to show that there are simulators written in many different computer
languages.

14 Chapter 2. Quantum Computer Simulators

Chapter 3

Practical Evaluation

Chapter 3: The testing consists of, where available, the timing of the im-
plementations of the quantum algorithms for growing input numbers to
determine the scaling in time with bigger inputs. This is a look at the
simulators with existing implementations of Shor’s number factorization
algorithm and Grover’s database search algorithm. All the test data is
found in Appendix A.

All tests were conducted on a computer with a AMD 3.2 GHz Quad Core
processor with 4096 MB of RAM running Ubuntu 11.10.

3.1 Shor’s factorization algorithm

3.1.1 LibQuantum

The implementation of Shor’s factorization algorithm in LibQuantum takes one
input, a number. When it is run it reports throughout the calculation what is
being done, as shown below for N = 111:

$./shor 111
N = 111, 37 qubits required
Random seed: 52
Measured 2276 (0.138916), fractional approximation is 5/36.
Possible period is 36.
Unable to determine factors, trying again.
Random seed: 4
Measured 6372 (0.388916), fractional approximation is 7/18.
Possible period is 18.
111 = 37 * 3

For testing purposes the algorithm was rewritten to restart the calculation if
the measurement was unsuccessful as well as take another input, the number of
iterations that wishes to be run, and instead output the time taken to complete
each iteration, as shown below for N = 155 and iterations = 10:

$./shorloop 155 10
N = 155, 41 qubits required
Time: 4 seconds and 30 milliseconds
Time: 4 seconds and 0 milliseconds
Time: 3 seconds and 950 milliseconds
Time: 10 seconds and 120 milliseconds
Time: 2 seconds and 40 milliseconds
Time: 2 seconds and 50 milliseconds
Time: 5 seconds and 690 milliseconds
Time: 1 seconds and 980 milliseconds

Brandhorst-Satzkorn, 2012. 15

16 Chapter 3. Practical Evaluation

Time: 3 seconds and 810 milliseconds
Time: 4 seconds and 40 milliseconds

The practical limitations for the implementation comes at N > 400 as the time
of the execution scales out of proportion. This is due to the program getting
stuck in a loop where it cannot determine the factors of the number from the
modular exponentiation. Having run the program for various numbers above
400 it can be said that for the majority of them the implementation cannot
determine the factors. Since the program cannot reliably factor every number
in the range 400 < N < 500, it will be considered the practical limit of the
program. A separate memory allocation problem is encountered for N > 1000.

Below is shown a number of graphs created with the use of the loop program.
All different numbers were run with 10 iterations.

100 150 200 250 300 350 400

Number Factorized

0.1

1

10

100

1000

Lo
g
a
ri

th
m

ic
 T

im
e
 (

s)

Shor's Factorization Algorithm, LibQuantum
All data samples included, 10 iterations

100 150 200 250 300 350 400

Number Factorized

0.1

1

10

100

1000

Lo
g

a
ri

th
m

ic
 T

im
e
 (

s)

Shor's Factorization Algorithm, LibQuantum
Mean value for every number with standard deviation included

As is evident of the first graph, the degree of difference in the time range is con-
sistently quite large. This is due to the probabilistic nature of Shor’s algorithm,

3.1. Shor’s factorization algorithm 17

and quantum computers in general, where if the desired value cannot be found,
you simply run the calculation again. As a result the time elapsed is quite reg-
ularly found to be in groups, so that one group completed the algorithm in one
pass, the next in two passes etc.

It is peculiar that sometimes when the number factorized is increased, the
best calulation time will be similar or faster than it was for the smaller number.
As can be seen in the second graph, the time for N = 301 is on average better
than the time taken for N = 271. This can be greatly attributed to one large
sample value for the latter, seen in the diagrams above, which brings up the
average by a great deal. Another factor for the complex growth in calculation
time is the how the frequency distribution of xa mod N varies with N.

In conclusion it can be seen that the calculation time for LibQuantum’s
implementation of Shor’s factorization algorithm grows exponentially with time.

18 Chapter 3. Practical Evaluation

3.1.2 QCL

As QCL is not a library for using with C/C++ standard libraries, it is impossible
to properly time the execution time of the algorithm inside QCL. However, the
library QCL uses for simulations is found within the source code and includes
an implementation of Shor’s factorization algorithm. That implementation was
modified in this experiment. The modified code can be found in appendix B.

The implementation takes one input, a number. When it is run it reports
throughout the calculation what is being done, as shown below for N = 111:

$./shor 111
factoring 111: random seed = 1332083009, tries = 3.

RESET: reseting state to |0,0>
FFT: performing 1st fourier transformation.
EXPN: trying x = 68. |a,0> --> |a,68^a mod 111>
MEASURE: 2nd register: |*,73>
FFT: performing 2nd fourier transformation.
MEASURE: 1st register: |8192,73>
rational approximation for 8192/2^14 is 1/2, possible period: 2
111 = 3 * 37

For testing purposes the algorithm was rewritten to take another input, the
number of iterations that wishes to be run, and instead output the time taken
to complete each iteration, as shown below for N = 155 and iterations = 10:

$./shorloop 155 10
Time taken 2 seconds 340 milliseconds
Time taken 2 seconds 320 milliseconds
Time taken 3 seconds 380 milliseconds
Time taken 2 seconds 390 milliseconds
Time taken 8 seconds 70 milliseconds
Time taken 6 seconds 900 milliseconds
Time taken 3 seconds 440 milliseconds
Time taken 2 seconds 420 milliseconds
Time taken 2 seconds 490 milliseconds
Time taken 2 seconds 470 milliseconds

The modified code can be found in appendix B. The practical limitations for
the implementation are mostly felt by the execution time growing for bigger
numbers. At N = 703 the mean time to complete the factorization is 75 seconds,
while peaking as high as 188 seconds. A memory allocation error is encountered
for N > 1000.

Below is shown a number of graphs created with the use of the loop program.
All different numbers were run with 10 iterations.

100 200 300 400 500 600 700 800

Number Factorized

0.1

1

10

100

1000

Lo
g

a
ri

th
m

ic
 T

im
e
 (

s)

Shor's Factorization Algorithm, Quantum Programming Language
All data samples included, 10 iterations

3.1. Shor’s factorization algorithm 19

100 200 300 400 500 600 700 800

Number Factorized

0.1

1

10

100

1000

Lo
g
a
ri

th
m

ic
 T

im
e
 (

s)

Shor's Factorization Algorithm, Quantum Programming Language
Mean value for every number with standard deviation included

Compared to the graph for LibQuantum, here we have a greatly increased sam-
ple size due to the fact that the algorithm can factor numbers all the way up to
703 without running into memory errors. We can again note that the degree of
difference in the time range is consistently large, for the same reasons as stated
in the graph for LibQuantum.

Something interesting occurs for 400 > N > 300, where the average time
drops down from the previous value and then steadily rises up again. It is quite
remarkable that while LibQuantum cannot handle numbers above 300 very well,
QCL’s implementation instead gets better for this number range.

In conclusion it can be seen that the calculation time for QCL’s implemen-
tation of Shor’s factorization algorithm also grows exponentially with time.

Finally show below is the graph for the mean values compared to each other.

100 200 300 400 500 600 700 800

Number Factorized

0.1

1

10

100

1000

Lo
g

a
ri

th
m

ic
 T

im
e
 (

s)

Mean values for QCL Exponential regression QCL
Mean values for LibQuantum Exponential regression LibQuantum

Shor's Factorization Algorithm - LibQuantum and QCL Comparison

20 Chapter 3. Practical Evaluation

It is interesting to note that the mean of QCL is better than LibQuantum for
every value of N, although in some measurements the single fastest measurement
of the two was LibQuantum. This suggests that the QCL implementation is less
prone to single large sample values while LibQuantum is more so.

3.2 Grover’s database search algorithm

3.2.1 LibQuantum

The implementation of Grover’s database search algorithm on LibQuantum
takes two inputs, the first is the number that should be searched for, and the
second is the size of the qubit database, as shown for 42 and database size = 8
qubits (N = 28 = 256 positions).

$./grover 42 8
Iterating 12 times
Iteration #1
Iteration #2
Iteration #3
Iteration #4
Iteration #5
Iteration #6
Iteration #7
Iteration #8
Iteration #9
Iteration #10
Iteration #11
Iteration #12

Found 42 with a probability of 0.999947

As seen the function iterates π
4

√
N times and returns the probability of success.

With bigger numbers the number of iterations increases as well as the time for
every iteration.

For testing purposes the program was rewritten to take another input, the
number of iterations that wishes to be run, and instead output the time taken to
complete each iteration, as shown below for 42, database size 13 and 5 iterations:

$./groverloop 42 13 5
Time: 0 seconds and 700 milliseconds
Time: 0 seconds and 710 milliseconds
Time: 0 seconds and 740 milliseconds
Time: 0 seconds and 730 milliseconds
Time: 0 seconds and 780 milliseconds

The modified code can be found in appendix B. The time taken for each iteration
includes all the function iterations. Included below is a graph showing the time
scaling of LibQuantums implementation of Grover’s database search algorithm.

3.2. Grover’s database search algorithm 21

10 12 14 16 18 20

Size of searched database in qubits

0.01

0.1

1

10

100

1000

Lo
g
a
ri

th
m

ic
 T

im
e
 (

s)

Grover's Database Search Algorithm, LibQuantum
Mean values, standard deviation included, 10 iterations

As seen in the graph the statistical values almost perfectly align with the ex-
ponential trend line, and the standard deviation is comparatively small for all
database sizes.

The practical limitations of the algorithm is for database size values of > 20,
where the execution time of each iteration becomes too large. It returns a
segmentation fault for database size values of > 25.

As a conclusion it can be said that the implementation of Grover’s database
search algorithm in LibQuantum grows exponentially in time with bigger qubit
values of the database size, with about a tripling in computation time per qubit
increase in database size. The reason for this is two-fold, since not only is the
computation time increased for every iteration when the database is bigger,
there is also a need for more iterations to give a sufficiently accurate result.

3.2.2 QCL

Although QCL has an implementation for Grover’s database search algorithm,
it is as previously stated currently impossible to time the execution time of the
algorithm using standard library timing functions. Therefore no direct compar-
ison in terms of execution time can be made, however sampled below is the use
of the implementation for a few different values.

The program is launched through the terminal, first by launching QCL and
second by calling the function grover, below shown searching for the value 25 in
a database of 8 qubits (N = 25 = 32 positions):

$./qcl grover -i
QCL Quantum Computation Language (64 qubits, seed 1336898397)
[0/64] 1 |0>
qcl> grover(25)
: 5 qubits, using 3 iterations
: measured 25
[0/64] 1 |0>

Compared to the LibQuantum implementation, a lot less information is pro-
vided. There is no indicator of when an iteration is completed which makes it
unnecessarily frustrating to wait for a big computation to complete, as opposed
to for LibQuantum where the progress is shown through the completion of each

22 Chapter 3. Practical Evaluation

iteration. It is worth noting at this stage that the QCL implementation uses
half the iterations of LibQuantum and give as reason for this that the desired
probability is only p > 1

2 [2].

An edited version of the program was used for testing, which prints every
iteration of the algorithm and takes an extra parameter, the size of the database
in qubits and, for a fair comparison, the number of iterations increased to gain
the same probability of correctness as LibQuantum (iterations = π

4

√
N):

qcl> grover(25,8)
: 8 qubits, using 13 iterations
: iteration 1 completed
: iteration 2 completed
: iteration 3 completed
: iteration 4 completed
: iteration 5 completed
: iteration 6 completed
: iteration 7 completed
: iteration 8 completed
: iteration 9 completed
: iteration 10 completed
: iteration 11 completed
: iteration 12 completed
: iteration 13 completed
: measured 25
[0/64] 1 |0>

For smaller sizes of the database it is impossible to time the execution man-
ually, but given a large enough database size and iterations a fair comparison
should be possible. Manual timing using a stopwatch was used for database
sizes of 13-17 qubits. There were 5 measurements performed for each database
size. The human error in timing can account for roughly 0.5 seconds. Shown
below are the results of the test.

12 13 14 15 16 17 18

Size of searched database in qubits

1

10

100

1000

Lo
g

a
ri

th
m

ic
 T

im
e
 (

s)

Grover's Database Search Algorithm, QCL
Mean values, standard deviation included, 5 iterations

As seen the growth is again even and without much deviation. The execu-
tion time is roughly tripled for every one qubit increase in database size. This
is, again, down to both the increased number of iterations and the increased
time in each iteration. In conclusion it is shown that the execution time grows
exponentially for increasing database sizes.

3.2. Grover’s database search algorithm 23

The practical limitations of the algorithm is for database size values of > 18,
where the execution time of each iteration becomes too large. It, like LibQuan-
tum, returns a segmentation fault for database size values of > 25. This suggests
that they use the same or similar size of temporary memory.

Finally shown below is the comparison graph between LibQuantum and
QCL.

10 12 14 16 18 20

Size of searched database in qubits

0.01

0.1

1

10

100

1000

Lo
g
a
ri

th
m

ic
 T

im
e
 (

s)

Mean value for QCL Exponential Regression QCL
Mean value for LibQuantum Exponential Regression LibQuantum

Grover's Database Search Algorithm, LibQuantum and QCL comparison
Mean values, standard deviation included, 5-10 iterations

As seen the growth of the two is very similar, almost identical however there
is a static relative difference between the two with LibQuantum outperforming
QCL in every measurement. The static difference implicates that there is some
part or function in the QCL implementation that takes much longer than the
LibQuantum equivalent, but with the same scaling pattern. In conclusion it
can be said that the LibQuantum implementation of Grover’s database search
algorithm is superior to the QCL implementation, being roughly 4,5 times faster
for all sizes of the database.

24 Chapter 3. Practical Evaluation

Chapter 4

Programming with the
simulators

Chapter 4: For all tested simulators an implementation of the Deutsch-Jozsa
algorithm has been coded to compare the difficulty of creating an arbitrary
quantum algorithm and to see how the simulators express the quantum
states. All the code can be found in appendix B

4.1 LibQuantum

There was already an implementation of the Deutsch-Jozsa algorithm included
in LibQuantum, which has been modified, the entire code can be found in
appendix B. Writing the code is very easy and very similar to any other C code
in the structure, making it easy to come from a background of C programming
and dive straight into the functions LibQuantum has to offer. A look through
the documentation gives a good overview of available functions.

For this particular algorithm the possibility to make an if-statement based
on a measurement is great since it is useful for displaying the result as text
rather than as a result of a measurement.

4.2 QCL

There is another implementation of Deutsch-Jozsa’s algorithm included in QCL
but a revised version has been created to get a feel of how the programming in
QCL works.

At first it is hard and everything has to be referenced back to the docu-
mentation, which is thorough and a good source of help when constructing the
algorithms. It is immediately obvious that the inability to set the initial state of
the quantum computer is a lacking feature. The lack of a proper state printing
function is also annoying as doing any kind of troubleshooting relies heavily on
the changes of the quantum states from operation to operation.

The implementation does in fact not seem to work, and the author has been
unable to pin the problem down other than noticing that the first Hadamard
gate does not seem to give the desired state. If this is error in the code or error

Brandhorst-Satzkorn, 2012. 25

26 Chapter 4. Programming with the simulators

in the program is not evident, although after much searching it would seem that
there is some problem with the program itself.

4.3 Eqcs

After having sent several mails to the author of Eqcs and with the help of his
Hadamard gate definition the algorithm was finally completed. The main prob-
lem was the lack of documentation. If Eqcs had documentation like LibQuantum
it would be quite easy to use. As it stands even the definition of new gates is
something that has to be guessed unless you are helped, as the examples pro-
vided on the website give some hint as to how to do it but no clear direction.

The inclusion as a library into the C++ family of libraries is welcome as it
means that the use of other C++ functions is made possible.

Something else lacking from Eqcs is the ability to create an if-statement
based on a quantum measurement. The best you can do is return the result of
the measurement in ket-notation.

Chapter 5

Conclusions

Chapter 5: Conclusions regarding the testing and programming with the
simulators, pros and cons of each design and suggestions on improvements
further analysis possibilities.

5.1 The practical evaluation

The result of the practical evaluation weights heavily in favor of QCL when
it comes to time scaling of Shor’s algorithm. LibQuantum leaves something to
desire both in terms of memory usage and execution time of its implementation.

The result of the testing of Grover’s algorithm however weights in favor of
LibQuantum, as it was shown to be consitently 4,5 times faster than the QCL
implementation. This result points to show problems with the implementation
on the QCL side as the scaling of the two is very similar. There should be an
identifiable bottleneck in QCL that is much more efficient on LibQuantum.

In conclusions the pratical evaluation leaves something to desire from both
the contenstants that have predefined implementations of Shor’s and Grover’s
algorithms.

5.2 The programming

The result of the programming test is by far in favor of LibQuantum. The ease
of programming and likeliness to standard C syntax makes it very easy to jump
into and use, even with little experience in quantum computer simulation. The
troubleshooting tools available make it very easy to find where your algorithm
is doing something wrong.

QCL is hard to get used to and lacks many of the functions that exist in
C/C++. The syntax is somewhat similar to C but with subtle changes that
makes it sometimes unintuitive to use. With more use QCL might become
easier and more comfortable to use but the lack of general functions from the
standard computer languages will always stand out as a problem when con-
structing programs. Execution of your own algorithms within the qcl program
is also a source of annoyance, as the program has to be relaunched every time
you want a different random time seed in your algorithm. The lack of a good
quantum state print function for troubleshooting is also noticeable.

Brandhorst-Satzkorn, 2012. 27

28 Chapter 5. Conclusions

Eqcs is, like LibQuantum, quite easy to jump into once you know how to
use the basic functions, such as the gate constructor. The biggest problem is
the lack of documentation and lack of predefined functions. With some more
work on the documentation and with more gates defined the potential of Eqcs
is great.

5.3 Conclusions

The winner of this review is LibQuantum, for its ease of use, high amount of
predefined functions, as well as the troubleshooting software included and the
decoherence simulation support, which although not tested, provides a more
realistic simulation of quantum computer behaviour.

QCL is worth a special mention for its efficient memory management and
good time scaling in its implementation of Shor’s factorization algorithm. EQCS
still has a long way to go to reach the standard of documentation and imple-
mentations that LibQuantum has achieved.

5.4 Improvements

It is obvious to say that LibQuantum can improve its memory management
and speed up the execution time of its implementation of Shor’s algorithm. Af-
ter further investigating the differences between the QCL implementation and
the LibQuantum implementation using standard library timing functions , it is
shown that the LibQuantum included function for Modular Exponentiation is
responsible for the biggest execution time increase, and it scales much worse
than the QCL counterpart. As such, there should be room for improvement
in that function, however it is important to note that the QCL implementa-
tion is slightly different from the LibQuantum one, utilizing two separate quan-
tum Fourier transformations. Further work in this field could look through the
LibQuantum included functions and attempt to find where the bottleneck is
and what can be done about it.

Show below is the execution time and scaling of the various modules of the
two implementations. The total time of LibQuantum’s implementation is only
around 1,5% bigger than the execution time of the Modular Exponentiation
alone, as such the comparison between total time is made with that as guide
in the case of LibQuantums implementation. The two biggest components in
QCL’s implementation are shown as well as the total time for the whole program.
Notice the jumps at N = 255 and N = 511. This is due to the prime numbers
factors just before a power of 2 being easier to calculate, as well as the needed
increase in register size for the numbers above individual powers of 2. One can
also notice how the total time for the LibQuantum implementation is below the
QCL implementation for low values of N . As the time on that scale is measured
in less than a second the result is not very important.

5.4. Improvements 29

0 100 200 300 400 500 600

Number Factorized

0.1

1

10

100

1000

Lo
g
a
ri

th
m

ic
 T

im
e
 (

s)

Modular Exponentiation LibQuantum
Exponential Regression for the Modular Exponentiation LibQuantum
First Quantum Fourier Transform QCL
Exponential Regression for the 1st Quantum Fourier Transform QCL
Second Quantum Fourier Transform QCL
Exponential Regression for the 2nd Quantum Fourier Transform QCL
Total time QCL
Exponential Regression for the Total time QCL

Shor's Factorization Algorithm comparison of QCL and LibQuantum
Interal components execution time

30 Chapter 5. Conclusions

Bibliography

[1] Michael A. Nielsen, Isaac L. Chuang (2000), Quantum Computation and
Quantum Information, Cambridge University Press. ISBN 0-521-63235-8.

[2] Bernhard Ömer (2000), Quantum Programming in QCL, Vienna University
of Technology,
http://tph.tuwien.ac.at/∼oemer/doc/quprog.pdf

[3] Eleanor Rieffel (2008), An Overview of Quantum Computing for Technology
Managers,
arXiv:0804.2264v2[quant-ph]

[4] Eleanor Rieffel, Wolfgang Polak (2000), An Introduction to Quantum Com-
puting for Non-Physicists,
arXiv:quant-ph/9809016v2

[5] Bernhard Ömer (1998), A Procedural Formalism for Quantum Computing,
Vienna University of Technology,
http://tph.tuwien.ac.at/∼oemer/doc/qcldoc.pdf

[6] Bernhard Ömer (2009), Structured Quantum Programming,
Vienna University of Technology.
http://tph.tuwien.ac.at/ oemer/doc/structquprog.pdf

[7] Bernhard Ömer (2003), Classical Concepts in Quantum Programming,
arXiv:quant-ph/0211100v2

[8] Björn Butscher, Hendrik Weimer (2011),
http://www.libquantum.de/bibliography

[9] David P. DiVincenzo (1994), Two-bit gates are universal for quantum com-
putation,
arXiv:cond-mat/9407022v1

[10] Andrew Steane (1996), Multiple Particle Interference and Quantum Error
Correction,
arXiv:quant-ph/9601029v3

[11] Peter Shor (1996),
Polynomial-Time Algorithms for Prime Factorization and Discrete Loga-
rithms on a Quantum Computer,
arXiv:quant-ph/9508027v2

Brandhorst-Satzkorn, 2012. 31

32 Bibliography

[12] Lov Grover (1996), A fast quantum mechanical algorithm database search,
arXiv:quant-ph/9605043v3

[13] Charles H. Bennet, Ethan Bernstein, Gilles Brassard, Umesh Vazirani
(1997), Strenghts and Weaknesses of Quantum Computing,
arXiv:quant-ph/9701001v1

[14] Adriano Barenco, Charles H. Bennet, Richard Cleve, David P. DiVincenzo,
Norman Margolus, Peter Shor, Tycho Sleator, John Smolin, Harald Wein-
furter (1995), Elementary gates for quantum computation,
arXiv:quant-ph/9503016v1

[15] Vlatko Vedral, Adriano Barenco, Artur Ekert (1995), Quantum Networks
for Elementary Arithmetic Operation,
arXiv:quant-ph/9511018v1

[16] Tommaso Toffoli (1980), Reversible Computing,
http://pm1.bu.edu/∼tt/publ/revcomp-rep.pdf

[17] Jonathan Barret, Stefano Pironio (2005), Popescu-Rohrlich Correlations as
a Unit of Nonlocality
http://link.aps.org/doi/10.1103/PhysRevLett.95.140401

[18] Quantiki, Quantum wiki page (2011), List of QC simulators
http://www.quantiki.org/wiki/List of QC simulators

[19] Eqcs (2012), Eqcs-0.0.8
http://home.snafu.de/pbelkner/eqcs/index.html

[20] Matthew Hayward (2008), Quantum Computing and Shor’s Algorithm
http://students.imsa.edu/ matth/quant/299/paper.pdf

[21] LibQuantum (2012), Quantum Error Correction
http://www.libquantum.de/api/1.1/Quantum-Error-Correction.html

Appendix A

Statistical Data

A.1 Shor’s Factorization Algorithm

A.1.1 LibQuantum

N/Iteration 111 155 201 249 287 301 329 371 399
1 0,59 2,7 4,73 26,43 23,86 13,55 13,26 144,5 26,47
2 0,64 2,2 14,17 27,03 23,65 13,11 132,51 58,09 26,47
3 1,93 2,6 4,68 49,45 23,97 13,03 39,85 213,9 52,97
4 0,62 18,11 9,48 35,94 11,93 13,01 66,14 121,04 26,5
5 0,64 4,1 18,5 4,47 23,85 13 118,94 30,66 26,54
6 1,24 4,2 4,83 17,86 11,92 39,03 79,52 64,43 26,5
7 0,64 1,95 4,81 8,5 35,79 39,04 40,04 58,16 26,62
8 1,28 1,97 22,94 26,36 11,96 38,98 26,63 58,23 53,06
9 0,66 8,17 9,5 39,91 11,93 38,94 92,56 29,58 26,56
10 1,29 6,6 9,32 12,98 112,9 12,98 13,18 28,88 26,23
Mean 0,953 5,26 10,3 24,89 29,96 23,47 62,263 80,75 31,792
Std. Dev 0,434 4,718 6,057 13,553 31,190 12,682 40,564 57,469 10,612
Median 0,65 3,4 9,4 26,39 23,75 13,33 53,09 58,19 26,52

Brandhorst-Satzkorn, 2012. 33

34 Appendix A. Statistical Data

A
.1

.2
Q

u
a
n
tu

m
C

o
m

p
u
te

r
L

a
n
g
u
a
g
e

N
/I

te
ra

ti
on

11
1

15
5

20
1

24
9

2
8
7

3
0
1

3
2
9

3
7
1

3
99

4
1
3

5
0
1

5
8
1

7
0
3

1
1,

8
2,

19
3,

01
16

,4
4

1
5
,8

7
1
5
,4

7
1
5
,4

6
1
1
,1

8
1
6,

4
3
0
,9

7
1
5
,0

1
2
0
9
,2

5
7
8
,9

2
0,

45
3,

14
16

,4
6

3,
11

1
0
,9

3
2
5
,9

7
2
5
,6

9
2
5
,8

6
1
5,

7
3
0
,3

3
1
5
,1

1
7
6
,3

6
7
9
,0

1
3

0,
63

3,
1

3,
03

13
,3

5
3
5
,9

1
2
6
,1

3
1
5
,3

2
1
5
,6

8
1
5,

7
4

1
4
,8

4
9
4
,6

6
2
3
0
,0

5
1
8
7
,7

1
4

0,
45

2,
24

3,
05

6,
24

8
,7

2
6
,3

7
1
,3

1
1
,0

8
1
5,

8
2

2
4
,9

4
5
5
,0

6
7
5
,3

2
5
3
,9

8
5

0,
45

8,
46

3,
1

11
,3

3
8
,8

8
3
1
,5

2
1
5
,0

3
1
6
,5

7
1
5,

7
1
4
,7

6
1
4
,9

2
7
4
,4

5
5
3
,2

6
0,

45
2,

23
3

3,
09

1
0
,7

3
2
6
,3

6
2
5
,2

9
2
6
,3

1
5,

6
4
0
,9

4
4
4
,1

9
7
4
,7

7
5
3
,6

7
0,

46
5,

38
3,

14
3,

12
8
,8

1
1
5
,6

8
1
5
,0

7
2
6
,5

4
1
5,

8
7

1
4
,7

6
3
9
,2

9
7
5
,3

7
5
3
,0

2
8

0,
62

2,
21

14
,4

4
13

,3
6

1
0
,8

5
3
1
,4

3
1
5
,2

8
1
0
,6

6
1
5,

7
5

1
4
,8

2
1
4
,8

9
2
0
1
,7

4
5
3
,0

4
9

0,
45

2,
27

5,
02

6,
22

1
5
,5

3
1
5
,6

3
1
5
,0

6
1
5
,7

8
1
5,

6
5

1
5
,1

9
3
9
,2

7
7
8
,1

2
5
3
,2

5
10

0,
46

2,
27

3,
03

3,
09

8
,7

8
1
5
,6

4
1
5
,2

5
1
0
,6

7
1
5,

6
3

1
4
,6

5
8
3
,5

9
7
7
,2

7
8
0
,6

1
M

ea
n

0,
62

2
3,

34
9

5,
72

8
7,

93
5

1
3
,5

2
3
,0

1
2
2
,8

7
5

1
7
,0

3
1
5,

7
9

2
1
,6

2
4
1
,5

9
9

1
1
7
,2

7
7
4
,6

3
2

S
td

.
D

ev
0,

39
85

1,
94

43
4,

91
67

4,
91

77
7
,8

8
6
1

6
,3

5
0
0

1
6
,6

4
3

6
,3

9
2
1

0
,2

1
9

9
,0

7
6
5

2
7
,5

8
8

6
3
,4

6
3

3
9
,4

6
9

M
ed

ia
n

0,
45

5
2,

27
3,

07
5

6,
23

1
0
,7

9
2
6
,0

5
1
5
,3

1
5
,7

3
1
5,

7
2

1
5
,0

2
3
9
,2

8
7
6
,8

1
5

5
3
,7

9

A.2. Grover’s Database Search Algorithm 35

A.2 Grover’s Database Search Algorithm

A.2.1 LibQuantum

Qubits/Iteration 10 11 12 13 14 15 16 17 18
1 0,03 0,09 0,25 0,69 2,21 7,32 20,44 68,44 284,2
2 0,03 0,09 0,27 0,71 1,65 7,7 21,27 50,25 294,2
3 0,04 0,09 0,25 0,77 2,22 7,36 22,56 70,28 291,5
4 0,04 0,09 0,27 0,79 2,16 7,6 18,12 68,31 222,7
5 0,02 0,1 0,28 0,82 2,23 7,25 24,35 68,07 285,7
6 0,04 0,09 0,26 0,63 2,11 5,32 23,56 64,42 293,2
7 0,03 0,09 0,29 0,81 2,24 7,23 24,37 67,96 284,9
8 0,04 0,1 0,26 0,8 2,33 7,52 18,38 73,02 214,6
9 0,03 0,09 0,25 0,82 2,23 7,4 24,47 69,9 266,5
10 0,04 0,09 0,26 0,63 2,33 7,64 23,64 72,78 267
Mean 0,034 0,092 0,264 0,747 2,171 7,234 22,116 67,34 270,4
Std. Dev 0,007 0,004 0,013 0,072 0,185 0,657 2,317 6,170 27,528
Median 0,035 0,09 0,26 0,78 2,225 7,38 23,06 68,38 284,5

A.2.2 Quantum Computer Language

Qubits/Iteration 13 14 15 16 17
1 3,5 9,5 30,1 95 301,6
2 3,4 9,8 29,5 96,5 299,5
3 3,4 9,6 29,7 95,4 298,4
4 3,3 9,7 29,8 93,6 301,3
5 3,3 9,6 29,5 94,9 304,2
Mean 3,38 9,64 29,72 95,08 301
Std. Dev 0,075 0,102 0,223 0,933 1,985
Median 3,4 9,6 29,7 0,932 301,3

36 Appendix A. Statistical Data

A
.3

In
te

rn
a
l

ti
m

in
g

co
m

p
a
ri

so
n

o
f

S
h

o
r’

s
A

lg
o
ri

th
m

A
.3

.1
L

ib
Q

u
a
n
tu

m

N
/

O
p

er
at

io
n

11
1

15
5

20
1

2
4
9

2
5
5

2
5
9

2
8
7

3
0
1

3
2
9

3
7
1

5
1
1

5
1
3

M
o
d

u
la

r
E

x
p

on
en

ti
at

io
n

0,
58

1,
95

4,
3
4

4
,3

5
3
,8

4
1
1
,1

7
1
1
,8

5
1
2
,5

4
1
3
,1

2
3
2
,8

1
2
5
,8

1
4
0
,7

2
M

ea
su

re
0,

02
0,

05
0,

1
0
,0

9
0
,0

9
0
,2

1
0
,2

1
0
,2

1
0
,2

2
0
,4

3
0
,4

3
0
,9

8
Q

u
an

tu
m

F
ou

ri
er

T
ra

n
sf

or
m

0,
02

0,
01

0,
1
1

0
,0

5
0
,0

1
0
,1

4
0
,0

7
0
,0

7
0
,1

2
0
,1

9
0
,1

9
1
,9

6

A
.3

.2
Q

u
a
n
tu

m
C

o
m

p
u
te

r
L

a
n
g
u
a
g
e

N
/

O
p

er
at

io
n

11
1

15
5

2
0
1

2
4
9

2
5
5

2
5
9

2
8
7

3
0
1

3
2
9

3
7
1

5
1
1

5
1
3

1s
t

Q
u

an
tu

m
F

ou
ri

er
T

ra
n

sf
or

m
0,

15
0,

71
0
,7

1
0
,7

2
0
,7

2
3
,2

9
3
,3

7
3
,3

6
3
,3

5
3
,4

2
3
,3

1
1
5
,3

6
M

o
d

u
la

r
E

x
p

on
en

ti
at

io
n

0,
01

0,
07

0
,0

7
0
,0

6
0
,0

6
0
,3

0
,3

0
,3

0
,3

1
0
,3

2
0
,3

1
1
,3

9
M

ea
su

re
0,

01
0,

01
0
,0

2
0
,0

2
0
,0

1
0
,0

5
0
,0

4
0
,0

5
0
,0

5
0
,0

5
0
,0

5
0
,2

2n
d

Q
u

an
tu

m
F

ou
ri

er
T

ra
n

sf
or

m
0,

29
1,

46
2
,4

1
4
,1

3
0
,8

8
7
,3

5
5
,1

3
1
1
,9

1
1
,4

1
2
,1

8
5
,2

9
6
2
,2

1

Appendix B

Programming code

B.1 LibQuantum

B.1.1 Shor loop

1 /*
2 shorloop.c, modified version of shor.c by
3 Bjoern Butscher and Hendrik Weimer made for
4 the purpose of iterating and measuring effiency.
5
6 By Johan Brandhorst.
7 */
8
9 #include <stdlib.h>

10 #include <stdio.h>
11 #include <math.h>
12 #include <time.h>
13
14 #include <quantum.h>
15
16 int main(int argc , char **argv)
17 {
18 quantum_reg qr;
19 int j,i;
20 int width , swidth;
21 int x = 0;
22 int N;
23 int iter;
24 int c,q,a,b, factor;
25
26 if(argc == 1 || argc == 2 || argc > 3)
27 {
28 printf("Usage: shorloop [number] [iterations]\n\n");
29 return 3;
30 }
31
32 N=atoi(argv [1]);
33 iter = atoi(argv [2]);
34
35 if(N<15 || N % 2 == 0)
36 {
37 printf("Invalid number\n\n");
38 return 3;
39 }
40
41 width=quantum_getwidth(N*N);
42 swidth=quantum_getwidth(N);
43
44 printf("N = %i, %i qubits required\n", N, width +3* swidth +2);

Brandhorst-Satzkorn, 2012. 37

38 Appendix B. Programming code

45
46 // The iterations needed
47 for (j = 0; j < iter; j++)
48 {
49 // Start the timing function
50 clock_t start = clock(), diff;
51
52 retry:
53 srand(time (0));
54 // To make sure a new random seed is selected
55 x = 0;
56
57 if(argc >= 3)
58 {
59 x = atoi(argv [2]);
60 }
61 while ((quantum_gcd(N, x) > 1) || (x < 2))
62 {
63 x = rand() % N;
64 }
65
66 qr=quantum_new_qureg (0, width);
67
68 for(i=0;i<width;i++)
69 quantum_hadamard(i, &qr);
70
71 quantum_addscratch (3* swidth+2, &qr);
72
73 quantum_exp_mod_n(N, x, width , swidth , &qr);
74
75 for(i=0;i<3* swidth +2;i++)
76 {
77 quantum_bmeasure (0, &qr);
78 }
79
80 quantum_qft(width , &qr);
81
82 for(i=0; i<width /2; i++)
83 {
84 quantum_cnot(i, width -i-1, &qr);
85 quantum_cnot(width -i-1, i, &qr);
86 quantum_cnot(i, width -i-1, &qr);
87 }
88
89 c=quantum_measure(qr);
90
91 // If 0 is measured , try again
92 if (c == 0)
93 {
94 printf("Measured 0, trying again");
95 goto retry;
96 }
97
98 q = 1<<(width);
99

100 printf("Measured %i (%f), ", c, (float)c/q);
101
102 quantum_frac_approx (&c, &q, width);
103
104 printf("fractional approximation is %i/%i.\n", c, q);
105
106 if((q % 2 == 1) && (2*q<(1<<width)))
107 {
108 printf("Odd denominator , trying to expand by 2.\n");
109 q *= 2;
110 }
111
112 if(q % 2 == 1)
113 {
114 printf("Odd period , try again.\n");
115 goto retry;
116 }
117
118 printf("Possible period is %i.\n", q);

B.1. LibQuantum 39

119
120 a = quantum_ipow(x, q/2) + 1 % N;
121 b = quantum_ipow(x, q/2) - 1 % N;
122
123 a = quantum_gcd(N, a);
124 b = quantum_gcd(N, b);
125
126 if(a>b)
127 factor=a;
128 else
129 factor=b;
130
131 if((factor < N) && (factor > 1))
132 {
133 printf("%i = %i * %i\n", N, factor , N/factor);
134 diff = clock () - start;
135
136 // Print the time taken
137 int msec = diff * 1000 / CLOCKS_PER_SEC;
138 printf("Time: %d seconds and %d milliseconds\n"
139 ,msec /1000, msec %1000);
140 }
141 else
142 {
143 printf("Factors could not be determined\n");
144 goto retry;
145 }
146 }
147
148
149 // Clean up
150 quantum_delete_qureg (&qr);
151
152 return 0;
153 }

40 Appendix B. Programming code

B.1.2 Grover Loop

1 /*
2 groverloop.c, modified version of grover.c by
3 Bjoern Butscher and Hendrik Weimer made for
4 the purpose of iterating and measuring effiency.
5
6 By Johan Brandhorst.
7 */
8
9 #include <quantum.h>

10 #include <stdio.h>
11 #include <math.h>
12 #include <stdlib.h>
13 #include <time.h>
14
15 #ifdef M_PI
16 #define pi M_PI
17 #else
18 #define pi 3.141592654
19 #endif
20
21 void oracle(int state , quantum_reg *reg)
22 {
23 int i;
24
25 for(i=0;i<reg ->width;i++)
26 {
27 if(!(state & (1 << i)))
28 {
29 quantum_sigma_x(i, reg);
30 }
31 }
32
33 quantum_toffoli (0, 1, reg ->width+1, reg);
34
35 for(i=1;i<reg ->width;i++)
36 {
37 quantum_toffoli(i, reg ->width+i, reg ->width+i+1, reg);
38 }
39
40 quantum_cnot(reg ->width+i, reg ->width , reg);
41
42 for(i=reg ->width -1;i>0;i--)
43 {
44 quantum_toffoli(i, reg ->width+i, reg ->width+i+1, reg);
45 }
46
47 quantum_toffoli (0, 1, reg ->width+1, reg);
48
49 for(i=0;i<reg ->width;i++)
50 {
51 if(!(state & (1 << i)))
52 quantum_sigma_x(i, reg);
53 }
54
55 }
56
57 void inversion(quantum_reg *reg)
58 {
59 int i;
60
61 for(i=0;i<reg ->width;i++)
62 quantum_sigma_x(i, reg);
63
64 quantum_hadamard(reg ->width -1, reg);
65
66 if(reg ->width ==3)
67 quantum_toffoli (0, 1, 2, reg);
68
69 else
70 {

B.1. LibQuantum 41

71 quantum_toffoli (0, 1, reg ->width+1, reg);
72
73 for(i=1;i<reg ->width -1;i++)
74 {
75 quantum_toffoli(i, reg ->width+i, reg ->width+i+1, reg);
76 }
77
78 quantum_cnot(reg ->width+i, reg ->width -1, reg);
79
80 for(i=reg ->width -2;i>0;i--)
81 {
82 quantum_toffoli(i, reg ->width+i, reg ->width+i+1, reg);
83 }
84
85 quantum_toffoli (0, 1, reg ->width+1, reg);
86 }
87
88 quantum_hadamard(reg ->width -1, reg);
89
90 for(i=0;i<reg ->width;i++)
91 quantum_sigma_x(i, reg);
92 }
93
94
95 void grover(int target , quantum_reg *reg)
96 {
97 int i;
98
99 oracle(target , reg);

100
101 for(i=0;i<reg ->width;i++)
102 quantum_hadamard(i, reg);
103
104 inversion(reg);
105
106 for(i=0;i<reg ->width;i++)
107 quantum_hadamard(i, reg);
108
109 }
110
111 int main(int argc , char **argv)
112 {
113 quantum_reg reg;
114 int iter , i, j, N, width =0;
115
116 srand(time (0));
117
118 if(argc ==1)
119 {
120 printf("Usage: grover [number] [[qubits]] [iterations] \n\n");
121 return 3;
122 }
123
124 N=atoi(argv [1]);
125 iter=atoi(argv [3]);
126
127 if(argc > 2)
128 width = atoi(argv [2]);
129
130 if(width < quantum_getwidth(N+1))
131 width = quantum_getwidth(N+1);
132
133 reg = quantum_new_qureg (0, width);
134
135 for (j = 0; j < iter; j++)
136 {
137 // Start the timer
138 clock_t start = clock(), diff;
139
140 quantum_sigma_x(reg.width , ®);
141
142 for(i=0;i<reg.width;i++)
143 quantum_hadamard(i, ®);
144

42 Appendix B. Programming code

145 quantum_hadamard(reg.width , ®);
146
147 for(i=1; i<=pi/4* sqrt(1 << reg.width); i++)
148 {
149 grover(N, ®);
150 }
151
152 quantum_hadamard(reg.width , ®);
153
154 reg.width ++;
155
156 quantum_bmeasure(reg.width -1, ®);
157
158 // Stop the timer and print the time taken
159 diff = clock() - start;
160
161 int msec = diff * 1000 / CLOCKS_PER_SEC;
162 printf("Time: %d seconds and %d milliseconds\n",msec /1000, msec %1000 ←↩

);
163
164 }
165
166 // Clean up
167 quantum_delete_qureg (®);
168
169 return 0;
170 }

B.1. LibQuantum 43

B.1.3 Deutsch-Jozsa’s algorithm

1 /*
2 Implementation of Deutsch -Josza's algorithm , created by Bjoern Butscher
3 and Hendrik Weimer and modified by Johan Brandhorst.
4 */
5
6 #include <quantum.h>
7 #include <math.h>
8 #include <time.h>
9 #include <stdlib.h>

10 #include <stdio.h>
11
12 void f (quantum_reg *reg , int N)
13 {
14 // Performs the CNOT with first qubit as control and qubit N+1 as target
15 quantum_cnot (0, N, reg);
16 }
17
18 int main(int argc , char **argv)
19 {
20 // Perform random seed for the simulation of quantum behaviour
21 srand(time (0));
22
23 int verbose = 0;
24
25 if (argc < 2 || !atoi(argv [1]))
26 {
27 printf("Usage: ./ deutsch [number of qubits] v [for verbose mode]");
28 return 0;
29 }
30
31 int N = atoi(argv [1]);
32
33 if (N < 1)
34 {
35 printf("The Number of Qubits must be > 0");
36 return 0;
37 }
38
39 if (argc > 2 && *argv [2] == 'v')
40 verbose = 1;
41
42 // Create new Quantum Registry , N+1 qubits , start value binary 1(N*0).
43 quantum_reg reg;
44 reg = quantum_new_qureg (1 << N, N+1);
45 printf("The Input :\n");
46 quantum_print_qureg(reg);
47
48 // Perform Hadamard on the qubits
49 quantum_walsh(N+1, ®);
50 if (verbose)
51 {
52 printf("Hadamard(N+1):\n");
53 quantum_print_qureg(reg);
54 }
55
56 // The function to be tested
57 f(® , N);
58 if (verbose)
59 {
60 printf("CNOT(1->N+1):\n");
61 quantum_print_qureg(reg);
62 }
63
64 // Perform hadamard on qubits 0-N.
65 quantum_walsh(N, ®);
66 if (verbose)
67 {
68 printf("Hadamard(N):\n");
69 quantum_print_qureg(reg);
70 }

44 Appendix B. Programming code

71
72 // Measure qubit N+1 to get rid of it from the registry
73 // (bmeasure counts qubits from 0, so qubit N+1 is acessed as N)
74 quantum_bmeasure(N, ®);
75
76 // Measure the remaining Quantum Registry , if 1 the function is balanced ,
77 // if 0 constant.
78 if (quantum_measure(reg))
79 printf("Result: Function is Balanced\n");
80 else
81 printf("Result: Function is Constant\n");
82
83 return 0;
84 }

B.2. QCL 45

B.2 QCL

B.2.1 Shor loop

1 /*
2 Implementation of Shor's algorithm by Bernhard Oemer.
3 Slightly edited by Johan Brandhorst for comparison purposes.
4 */
5
6 #include <math.h>
7 #include <time.h>
8 #include <unistd.h>
9 #include <stdio.h>

10
11 #include "operator.h"
12
13 extern char *optarg;
14 extern int optind;
15
16 // global variables
17
18 int seed=time (0); // random seed value
19 int quiet =0; // quiet mode
20 int verbose =0; // verbose mode
21 int show =0; // show state spectrums
22 int dump =0; // dump quantum state
23 int maxtries =3; // max. number of selections
24 int maxgates =-1; // max. number of cond. phase gates per bit in FFT
25 int iter =0; // total number of tries
26
27
28 // returns 0 and sets *a and *b if n = (*a) * (*b)
29 // returns 1 if n is a prime number
30
31 int factorize(word n,word *a,word *b) {
32 word i,m;
33
34 m=(word)ceil(sqrt((double)n));
35 for(i=2;i<=m;i++) {
36 if(n%i==0) {
37 *a=i;
38 *b=n/i;
39 return 0;
40 };
41 };
42 return 1;
43 }
44
45 // returns 1 if p is a power of b and 0 otherwise
46
47 int testpower(word p,word b) {
48 if(p<b) return testpower(b,p);
49 if(p==b) return 1;
50 if(p%b) return 0;
51 return testpower(p/b,b);
52 }
53
54 // returns x^a mod n
55
56 word powmod(word x,word a,word n) {
57 word u,y;
58 int i;
59 y=1; u=x;
60 for(i=0;i<BPW -1;i++) {
61 if(a & (1<<i)) { y*=u; y%=n; };
62 u*=u; u%=n;
63 };
64 return y;
65 }
66
67 // returns the greatest common divisor of a and b

46 Appendix B. Programming code

68
69 int gcd(int a,int b) {
70 if(b>a) return gcd(b,a);
71 return a%b ? gcd(a,a%b) : b;
72 }
73
74 // returns a random number 1 < r < (n-1) coprime to n
75
76 int randcoprime(int n) {
77 int x;
78
79 while (1) {
80 x=qc_lrand ()%(n-3)+2;
81 if(gcd(x,n)==1) return x;
82 }
83 }
84
85 // finds the best rational approximation (*p)/(*q) to x with
86 // denominator < qmax and sets *p and *q accordingly.
87
88 void approx(double x,word qmax ,word *p,word *q) {
89 word p0 ,p1,p2;
90 word q0 ,q1,q2;
91 word a;
92 double y,z,e;
93
94 e=1.0/(2.0*(double)qmax*(double)qmax);
95 y=x; a=(int)floor(y);
96 p0=1; p1=a;
97 q0=0; q1=1;
98
99 while (1) {

100 z=y-floor(y);
101 if(z<e) break;
102 y=1/z;
103 a=(int)floor(y);
104 p2=a*p1+p0;
105 q2=a*q1+q0;
106 if(q2>qmax) break;
107 p0=p1; p1=p2;
108 q0=q1; q1=q2;
109 };
110 *p=p1; *q=q1;
111 }
112
113 // performs a fast fourier transformation on qs using
114 // Coppersmith 's algorithm
115
116 opVar opFFT(int n) {
117 int i,j,m;
118 opVar op;
119
120 for(i=0;i<n;i++) {
121 if(maxgates >0) { m=i-maxgates; if(m<0) m=0; } else m=0;
122 for(j=m;j<i;j++) op *= opX(n,n-i-1,n-j-1,i-j+1);
123 op *= opEmbedded(n,n-i-1,new opU2(PI/2,PI/2,PI/2,PI));
124 };
125 for(i=0;i<(n/2);i++) op *= opSwap(n,1,i,n-i-1);
126 return op;
127 }
128
129 // prints usage message
130
131 void usage() {
132 cerr << "USAGE: shor [options] number\n";
133 cerr << "Options: -s<seed > set random seed value\n";
134 cerr << " -t<maxtries > set max. no. of selections from same state←↩

.\n";
135 cerr << " -g<gates > set max. no. of cond. phase gates per bit in ←↩

FFT.\n";
136 cerr << " -q operate quietly , -v verbose output\n";
137 }
138
139 // main program

B.2. QCL 47

140
141 int main(int argc ,char **argv) {
142
143 word number; // number to be factored
144 word factor; // found factor
145 int width; // length of N in bits
146
147 number = atoi(argv [1]);
148
149 { // testing number
150
151 word a,b;
152
153 if(number %2==0) {
154 cerr << "number must be odd !\n";
155 exit (1);
156 };
157 if(factorize(number ,&a,&b)) {
158 cerr << number << " is a prime number !\n";
159 exit (1);
160 };
161 if(testpower(b,a)) {
162 cerr << number << " is a prime power of " << a << " !\n";
163 exit (1);
164 };
165 };
166
167 cout.setf(ios::fixed ,ios:: floatfield);
168 cout.precision (4);
169
170 for (int i = 0; i < atoi(argv [2]); i++)
171 {
172 // Start the timer
173 clock_t start = clock(), diff;
174
175 width=duallog(number);
176 if(verbose) cout << "allocating " << (3* width) << " quBits with " <<
177 (1<<(2* width)) << " terms.\n";
178
179 { // Shors 's algorithm
180
181 int nreg1 =2*width ,nreg2=width;
182 quBaseState qubase(nreg1+nreg2 ,1<<nreg1);
183 quWord reg1(nreg1 ,0,qubase);
184 quWord reg2(nreg2 ,nreg1 ,qubase);
185 opVar op;
186
187 word x; // base value
188 word mreg1 ,mreg2; // mesaurements of 1st and 2nd register
189 word pow; // pow ^2==1 mod number
190 word a,b; // possible factors
191 word p,q; // fraction p/q for rational approximation
192 double qmax; // period and maximal period
193 int tries; // number of selections
194
195 while (1) {
196
197
198 qubase.reset(); // reseting state
199
200 opFFT(nreg1)(reg1); // 1st fourier transformaion
201
202 x=randcoprime(number); // selecting random x
203
204 opEXPN(nreg1 ,nreg2 ,x,number)(qubase); // modular exponentiation
205
206 mreg2=reg2.measure ().getword (); // measure 2nd register
207
208 opFFT(nreg1)(reg1); // 2nd fourier transformation
209
210 qmax=1<<width;
211 tries =0;
212
213 reselect:

48 Appendix B. Programming code

214
215 mreg1=reg1.select ().getword (); // measure 1st register
216
217 tries ++;
218 iter ++;
219 if(mreg1 ==0) {
220
221 if(tries <maxtries) {
222 goto reselect;
223 } else {
224 continue;
225 };
226 };
227
228 // finding rational approximation for mreg1/rmax^2
229 approx ((double) mreg1 /(qmax*qmax) ,(int) qmax ,&p,&q);
230
231 if(q&1) {
232 if(2*q<qmax) {
233 q*=2;
234 } else {
235 if(tries <maxtries) {
236 goto reselect;
237 } else {
238 continue;
239 };
240 };
241 };
242
243 pow=powmod(x,q/2,number); // pow = x^(q/2) mod number
244 a=(pow +1)%number; // candidates with possible
245 b=(pow+number -1)%number; // common factors with number
246
247 // testing for common factors with number
248 if(a>1 && (factor=gcd(number ,a)) >1) break;
249 if(b>1 && (factor=gcd(number ,b)) >1) break;
250
251 if(tries <maxtries) {
252 goto reselect;
253 } else {
254 continue;
255 };
256 };
257
258 // Calculate time
259 diff = clock() - start;
260 int msec = diff * 1000 / CLOCKS_PER_SEC;
261 printf("Time taken %d seconds %d milliseconds\n", msec /1000, msec %1000);
262
263 };
264 }
265
266 return 0;
267 }

B.2. QCL 49

B.2.2 Grover loop

1 // Edited by Johan Brandhorst for the purpose
2 // of measuring execution time. Increased
3 // certainty to > 99%
4
5 qufunct query(qureg x,quvoid f,int n) {
6 int i;
7 for i=0 to #x-1 { // x -> NOT (x XOR n)
8 if not bit(n,i) { Not(x[i]); }
9 }

10 CNot(f,x); // flip f if x=1111..
11 for i=0 to #x-1 { // x <- NOT (x XOR n)
12 if not bit(n,i) { !Not(x[i]); }
13 }
14 }
15
16 operator diffuse(qureg q) {
17 H(q); // Hadamard Transform
18 Not(q); // Invert q
19 CPhase(pi,q); // Rotate if q=1111..
20 !Not(q); // undo inversion
21 !H(q); // undo Hadamard Transform
22 }
23
24 operator search(qureg q,int n) {
25 int i;
26 qureg f[1];
27 for i=1 to ceil(sqrt (2^#q)) {
28 query(q,f,n);
29 CPhase(pi,f);
30 !query(q,f,n);
31 diffuse(q);
32 }
33 }
34
35 procedure grover(int n, int l) {
36 //int l=floor(log(n,2))+1; // no. of qubits
37 int m=ceil(pi/4* sqrt (2^l)); // no. of iterations
38 int x;
39 int i;
40 qureg q[l];
41 qureg f[1];
42 print l,"qubits , using",m,"iterations";
43 {
44 reset;
45 H(q); // prepare superposition
46 for i= 1 to m { // main loop
47 query(q,f,n); // calculate C(q)
48 CPhase(pi,f); // negate |n>
49 !query(q,f,n); // undo C(q)
50 diffuse(q); // diffusion operator
51 print "iteration" , i, "completed";
52 }
53 measure q,x; // measurement
54 print "measured",x;
55 } until x==n;
56 reset; // clean up local registers
57 }

50 Appendix B. Programming code

B.2.3 Deutsch-Jozsa’s algorithm

1 // Deutsch -Jozsa Algorithm with CNot as the function evaluated ,
2 // by Johan Brandhorst
3
4 procedure deutsch(int N) {
5 qureg x[N+1]; // N+1-qubit register
6 int n = 0;
7
8 reset; // Set the state to |0(N*0)>
9 Not(x[N]); // Set the state to |1(N*0)>

10 print "The Input:";
11 dump x;
12
13 H(x); // Hadamard on all qubits
14 print "Hadamard(N+1):";
15 dump x;
16
17 // Function to be tested
18 // CNot with N as target and 0 as control.
19 CNot(x[0],x[N]);
20 print "CNOT(1->N+1):";
21 dump x;
22
23 H(x[0:N-1]); // Hadamard on qubit 0-N
24 dump x;
25
26 // Measure the first N qubits to determine if function
27 // is constant or balanced
28 measure x[0:N-1],n;
29
30 reset; // Clean up
31
32 if n == 0 {
33 print "Function is constant";
34 } else {
35 print "Function is balanced";
36 }
37 }

B.3. Eqcs 51

B.3 Eqcs

B.3.1 Deutsch-Jozsa’s algorithm

1 // Deutsch -Josza Algorithm implementation by Johan Brandhorst.
2 // Implemented into EQCS 0.0.8
3
4 #include "eqcs_state.h"
5 #include "eqcs_qc.h"
6 #include "eqcs_lambda.h"
7 #include "gates.cc"
8 #include <iostream >
9 #include <cstdlib >

10 #include <cctype >
11
12 int main(int argc , char** argv)
13 {
14 // Simulate random behaviour of QC
15 randomize ();
16
17 int verbose = 0;
18
19 if (argc < 2 || !atoi(argv [1]))
20 {
21 cout << "Usage: ./ deutsch [number of qubits] v [for verbose mode on]"
22 << endl;
23 return 0;
24 }
25
26 int N = atoi(argv [1]);
27
28 if (N < 1)
29 {
30 cout << "The Number of Qubits must be > 0" << endl;
31 return 0;
32 }
33
34 if (argc > 2 && *argv [2] == 'v')
35 verbose = 1;
36
37 // Create the state |1(N*0)> (that is, 1 followed by N zeros).
38 unsigned long init = (1u << N);
39 EqcsState state(init);
40
41 // Create the Quantum Computer in state |1(N*0)>
42 EqcsQc qc(state);
43
44 // Create the GateArrays
45 EqcsGateArray deutsch1 , deutsch2 , deutsch3;
46
47 // Run Hadamard on all qubits and put into the GateArray deutsch
48 hadamard(deutsch1 , N+1);
49
50 // Run the CNOT gate , the function to be determined whether it is
51 // balanced or constant. Qubit N is target and Qubit 0 is control.
52 cnot(deutsch2 ,0,N);
53
54 // Run Hadamard on the N first qubits
55 hadamard(deutsch3 , N);
56
57 // Run the algorithm
58 qc.perform(deutsch1);
59 if (verbose)
60 cout << "Hadamard(N+1): " << bits(qc.state(), 1, N+1) << endl;
61
62 qc.perform(deutsch2);
63 if (verbose)
64 cout << "CNOT(1->N+1): " << bits(qc.state (), 1, N+1) << endl;
65
66 qc.perform(deutsch3);
67 if (verbose)

52 Appendix B. Programming code

68 cout << "Hadamard(N): " << bits(qc.state(), 1, N+1) << endl;
69
70 // Return the result of the test (Measure the N first qubits together)
71 // 2^N - 1 = The Binary mask used for calling what qubits to measure.
72 // N = 1; measure (1), N = 2; measure (3) (qubit 1 and 2 simultaneously).
73 cout << "The result; If 1 the function is balanced , if 0 it is constant"
74 << endl << bits(qc.measure(pow(2,N) - 1), 1, 1) << endl;
75
76 return 0;
77 }

B.3. Eqcs 53

B.3.2 Quantum gate definitions

1 // Help functions for the simulation of Algorithms in Eqcs -0.0.8
2
3 #include "eqcs_state.h"
4 #include "eqcs_qc.h"
5 #include "eqcs_lambda.h"
6 #include <iostream >
7 #include <cstdlib >
8 #include <ctime >
9

10 // Hadamard Gate by Peter Belkner
11 // Applies the Hadamard Gate on n qubits , n >=1.
12 void hadamard (EqcsGateArray &a, int n)
13 {
14 // Coefficient of the Hadamard Gate.
15 const static complex <double > u = 1.0/ sqrt (2.0);
16
17 // Create a sequence of Hadamard gates on qubit i.
18 for (int i = 0; i < n; i++)
19 {
20 EqcsLambda h(u,u,u,-u,0);
21
22 h.set(0,i);
23 a.push_back(h);
24 }
25 }
26
27 // Simple CNOT with configurable control and target qubits.
28 void cnot(EqcsGateArray &a, int control , int target)
29 {
30 EqcsLambda cnot (0.0, 1.0, 1.0, 0.0, 1);
31 cnot.set(0, target);
32 cnot.set(1, control);
33
34 a.push_back(cnot);
35 }
36
37 // Applies a Controlled -NOT operation with qubit i as control and i+1 as ←↩

target
38 // for n qubits , n >= 1.
39 void cnotgate(EqcsGateArray &a, int n)
40 {
41 for (int i = 0; i < n; i++)
42 {
43 EqcsLambda c(0.0, 1.0, 1.0, 0.0, 1);
44
45 c.set(0,i+1); // Target
46 c.set(1,i); // Control
47 a.push_back(c);
48 }
49 }
50
51 void toffoli (EqcsGateArray &a, int N)
52 {
53 // Qubit N+1 is target and Qubit 0 - N-1 are controls.
54 EqcsLambda Toffoli (0.0, 1.0, 1.0, 0.0, N);
55
56 // The target qubit is N (0:N)
57 Toffoli.set(0, N);
58
59 // All the other bits are controlling
60 for (int i = 0; i < N; i++)
61 Toffoli.set (i+1, i);
62
63 // Insert into GateArray
64 a.push_back(Toffoli);
65 }
66
67 // Creates a chain of logical quantum Not -gates and puts them into the
68 // input GateArray. N determines how many NOTs are inserted , from
69 // qubit 0 to qubit N.

54 Appendix B. Programming code

70 void notgate (EqcsGateArray &a, int n)
71 {
72 for (int i = 0; i < n; i++)
73 {
74 EqcsLambda c(0.0, 1.0, 1.0, 0.0, 0);
75
76 c.set(0,i);
77 a.push_back(c);
78 }
79 }
80
81 void randomize ()
82 {
83 // Simulate random behaviour of quantum computer
84 srand(time(NULL));
85 int n = rand() % 8;
86
87 // Runs the pseudo -random function a random number of times to combat
88 // the likeliness of random valued created next to each other.
89 for (int i = 0; i < n; i++)
90 rand();
91 }

Appendix C

5 CNOT-algorithm

Appendix C: 5 CNOT-algorithm This algorithm was originally planned to
be used to compare the performance of the different simulators, but was
scrapped after further consideration. The work performed is presented
below.

C.1 Five CNOT-gate testing algorithm

This is an algorithm where we put five CNOT-gates in a row after eachother and
perform a measurement. This was interesting because it has been shown that
a five qubit cluster state such as the one created cannot be simulated properly
through classical bit correlation [17]. Unfortunately the configuration tested did
not lead to the state desired and as such the algorithm was not as special as
hoped. Shown below is the graphical representation of the algorithm that was
implemented on the different simulators.

|0〉 H •

|0〉 H •

|0〉 H •

|0〉 H •

|0〉 H •

C.1.1 LibQuantum

The construction of the algorithm was simple, the functions needed were thor-
oughly explained in the documentation and with the standard C functions it
was easy to implement other functions around the primary objective to allow
for configurability such as different inputs allowing for more detailed output of
quantum states between operations.

Brandhorst-Satzkorn, 2012. 55

56 Appendix C. 5 CNOT-algorithm

1 /*
2 Implementation of a chain of 5 CNOT -gates in LibQuantum.
3 By Johan Brandhorst
4 */
5
6 #include <quantum.h>
7 #include <time.h>
8 #include <stdlib.h>
9 #include <stdio.h>

10
11 int main(int argc , char **argv)
12 {
13 // Perform random seed for the simulation of quantum behaviour
14 srand(time (0));
15 int N;
16
17 int verbose = 0;
18
19 if (argc > 2)
20 {
21 printf("Usage: ./5 cnot v [for verbose mode]");
22 return 0;
23 }
24
25 if (argc > 1 && *argv [1] == 'v')
26 verbose = 1;
27
28 // Create new Quantum Registry , 5 qubits , start value 0.
29 quantum_reg reg;
30 reg = quantum_new_qureg (0, 5);
31
32 // Print Registry Value
33 printf("The Input :\n");
34 quantum_print_qureg(reg);
35
36 // Perform hadamard transform on qubits
37 quantum_walsh (5, ®);
38 if (verbose)
39 {
40 printf("Hadamard :\n");
41 quantum_print_qureg(reg);
42 }
43
44 // Perform 5 cnot operations
45 // 0-3 control , 1-4 target
46 for (N = 0; N < 4; N++)
47 quantum_cnot(N, N+1, ®);
48 // 4 control , 0 target
49 quantum_cnot (4, 0, ®);
50
51 if (verbose)
52 {
53 printf("CNOT:\n");
54 quantum_print_qureg(reg);
55 }
56
57 // Print the result
58 printf("The Resulting State:\n");
59 quantum_print_qureg(reg);
60
61 return 0;
62 }

C.1. Five CNOT-gate testing algorithm 57

C.1.2 QCL

The construction was in this case extremely simple, although again the lack of
a proper quantum state print function is frustrating, and there is lack of certain
functions that are standard in the big programming languages and that would
make the program easier to use for the user.

1 // 5cnot -program by Johan Brandhorst
2
3 procedure cnot() {
4 qureg x[5]; // 5-qubit register
5
6 reset; // Reset state
7 H(x); // Hadamard
8
9 CNot(x[1],x[0]);

10 CNot(x[2],x[1]);
11 CNot(x[3],x[2]);
12 CNot(x[4],x[3]);
13 CNot(x[0],x[4]);
14
15 // Print the state
16 dump x;
17 }

58 Appendix C. 5 CNOT-algorithm

C.1.3 Eqcs

Straightforward implementation with the use of some C++ functions to make
the program more fun to use for the user. Once you’ve gotten used to the syntax
in Eqcs it is quite straightforward to use.

1 // 5cnot program by Johan Brandhorst. Implemented into EQCS 0.0.7
2
3 #include "eqcs_state.h"
4 #include "eqcs_qc.h"
5 #include "eqcs_lambda.h"
6 #include <iostream >
7 #include <cstdlib >
8 #include <ctime >
9 #include "gates.cc"

10
11 int main(int argc , char** argv)
12 {
13 // Simulate random behaviour of QC
14 randomize ();
15
16 int verbose = 0;
17
18 if (argc > 2)
19 {
20 cout << "Usage: ./5 cnot v [for verbose mode on]" << endl;
21 return 0;
22 }
23
24 if (argc > 1 && *argv [1] == 'v')
25 verbose = 1;
26
27 EqcsGateArray cnotprogram1 , cnotprogram2; // A gate array.
28
29 // Run the Hadamard gate on all 5 qubits and put into
30 // the cnotprogram GateArray
31 hadamard(cnotprogram1 , 5);
32
33 // Run the CNOT gate on 4 qubits with i as control and i+1 as target
34 // and put into the cnotprogram GateArray
35 cnotgate(cnotprogram2 , 4);
36
37 // Run the specialized CNOT gate with 5th as control and 1st as target.
38 cnot(cnotprogram2 ,4,0);
39
40 // Create state all qubits = 0;
41 EqcsState state = 0ul;
42
43 // Create a quantum computer initially in state |00000 >.
44 EqcsQc qc(state);
45
46 // Print the input
47 cout << "The input: " << bits(qc.state(), 1, 5) << endl;
48
49 // Run Hadamard.
50 qc.perform(cnotprogram1);
51 if (verbose)
52 cout << "Hadamard: " << bits(qc.state(), 1, 5) << endl;
53
54 // Run CNOTs.
55 qc.perform(cnotprogram2);
56 if (verbose)
57 cout << "5 CNOT: " << bits(qc.state(), 1, 5) << endl;
58
59 // Print the result.
60 cout << "The result: " << bits(qc.state(), 1, 5) << endl;
61
62 return 0;
63 }

Copyright

The publishers will keep this document online on the Internet - or its possi-
ble replacement - for a period of 25 years from the date of publication barring
exceptional circumstances. The online availability of the document implies a
permanent permission for anyone to read, to download, to print out single copies
for your own use and to use it unchanged for any non-commercial research and
educational purpose. Subsequent transfers of copyright cannot revoke this per-
mission. All other uses of the document are conditional on the consent of the
copyright owner. The publisher has taken technical and administrative mea-
sures to assure authenticity, security and accessibility. According to intellectual
property law the author has the right to be mentioned when his/her work is
accessed as described above and to be protected against infringement. For ad-
ditional information about the Linköping University Electronic Press and its
procedures for publication and for assurance of document integrity, please refer
to its WWW home page: http://www.ep.liu.se/

Upphovsrätt

Detta dokument h̊alls tillgängligt p̊a Internet - eller dess framtida ersättare
- under 25 år fr̊an publiceringsdatum under förutsättning att inga extraordi-
nära omständigheter uppst̊ar. Tillg̊ang till dokumentet innebär tillst̊and för
var och en att läsa, ladda ner, skriva ut enstaka kopior för enskilt bruk och
att använda det oförändrat för ickekommersiell forskning och för undervisning.
Överforing av upphovsrätten vid en senare tidpunkt kan inte upphäva detta
tillst̊and. All annan användning av dokumentet kräver upphovsmannens med-
givande. For att garantera äktheten, säkerheten och tillgängligheten finns det
lösningar av teknisk och administrativ art. Upphovsmannens ideella rätt in-
nefattar rätt att bli nämnd som upphovsman i den omfattning som god sed
kräver vid användning av dokumentet p̊a ovan beskrivna sätt samt skydd mot
att dokumentet ändras eller presenteras i s̊adan form eller i s̊adant sammanhang
som är kränkande for upphovsmannens litterära eller konstnärliga anseende eller
egenart. För ytterligare information om Linköping University Electronic Press
se förlagets hemsida http://www.ep.liu.se/

© 2012, Johan Brandhorst-Satzkorn

Brandhorst-Satzkorn, 2012. 59

